

CALDERA S7S

CALDERAS7S

Chaussure de sécurité mi-haute avec semelle extérieure de protection thermique

botte de sécurité confortable, sans métal et imperméable à l'eau, fabriquée en cuir huilé avec une semelle en caoutchouc

Tige	Cuir Crazy Horse
Doublure	Membrane
Semelle intérieure	Semelle intérieure en mousse SJ
Semelle anti-perforation	Textile anti-perforation
Semelle	Caoutchouc, BASF PU
Embout	Nano carbone
Catégorie	S7S / SR, SC, LG, ESD, HI, CI, FO, HRO
Tailles disponibles	EU 35-48 / UK 3.0-13.0 / US 3.0-13.5 JPN 21.5-31.5 / KOR 230-315
Poids de l'échantillon	0.860 kg
Normes	EN ISO 20345:2022+A1:2024 ASTM F2413:2024

Isolation au froid (CI)

Les chaussures de sécurité isolées contre le froid (CI) gardent vos pieds au chaud. Elles se portent dans des environnements froids.

Décharge électrostatique (ESD)

L'ESD permet la décharge contrôlée de l'énergie électrostatique qui peut endommager les composants électroniques et évite les risques d'inflammation résultant des charges électrostatiques. Résistance volumique entre 100 KiloOhm et 100 MegaOhm.

Semelle extérieure résistante à la chaleur (HRO)

La semelle extérieure résiste à des températures élevées allant iusau'à 300°C.

Poignée d'échelle (LG)

Contour spécialement défini dans la zone de la tige d'une chaussure de sécurité pour offrir une sécurité supplémentaire lorsque l'on se tient debout sur des échelles.

Sans métal

Les chaussures de sécurité sans métal sont en général plus légères que les chaussures de sécurité ordinaires. Elles sont également très utiles aux professionnels qui doivent passer plusieurs fois par jour devant des détecteurs de métaux.

Embout en nanocarbone

Matériau high-tech ultraléger, sans métal, sans conductivité thermique ou électrique.

Industries:

Chimie, Construction, Production, Exploitation minière, Pétrole et gaz

Environnements:

Environnement froid, Surfaces extrêmement glissantes, Environnement boueux, Surfaces accidentées, Surfaces chaudes, Environnement humide

Consignes de maintenance:

Pour prolonger la durée de vie de vos chaussures, nous vous recommandons de les nettoyer régulièrement et de les protéger avec des produits adéquats. Ne faites pas sécher vos chaussures sur un radiateur, ni à proximité d'une source de chaleur.

	Description	Unité de mesure	Résultat	EN ISO 20345
Tige	Cuir Crazy Horse			
	Tige : perméabilité à la vapeur d'eau	mg/cm²/h		≥ 0.8
	Tige : coefficient de vapeur d'eau	$mg/_{CM^2}$		≥ 15
Doublure	Membrane			
	Doublure : perméabilité à la vapeur d'eau	$mg/_{Cm^2}/h$		≥2
	Revêtement : coefficient de vapeur d'eau	$mg/_{CM^2}$		≥ 20
Semelle inté	rieure Semelle intérieure en mousse SJ			
	Semelle : résistance à l'abrasion (sèche/humide) (cycles)	cycles		25600/12800
Semelle	Caoutchouc, BASF PU			
	Résistance à l'abrasion de la semelle extérieure (perte de volume)	mm ³		≤150
	Résistance au glissement de base - Céramique + NaLS - Glissement du talon vers l'avant	friction		≥ 0.31
	Résistance au glissement de base - Céramique + NaLS - Glissement de la partie antérieure vers l'arrière	friction		≥ 0.36
	SR Résistance au glissement - Céramique + glycérine - Glissement du talon vers l'avant	friction		≥ 0.19
	SR Résistance au glissement - Céramique + glycérine - Glissement de la partie antérieure vers l'arrière	friction		≥ 0.22
	Valeur antistatique	Méga0hm		0.1 - 1000
	Valeur de l'ESD	Méga0hm		0.1 - 100
	Absorption de l'énergie du talon	J		≥ 20
Embout	Nano carbone			
	Résistance à l'impact sur l'embout (déformation après impact 100J)	mm		N/A
	Résistance à la compression de l'embout (déformation après compression 10kN)	mm		N/A
	Résistance à l'impact sur l'embout (déformation après impact 200J)	mm		≥ 14
	Résistance à la compression de l'embout (déformation après compression 15kN)	mm		≥14

Taille de l'échantillon: 42

Nos chaussures ne cessent pas d'évoluer, les données techniques ci-dessus peuvent être amenées à changer. Tous les noms de produits et la marque Safety Jogger, sont déposés et ne peuvent pas être utilisés ou copiés dans aucun format, sans accord écrit de notre part.

